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Protein translocation



Co-translational and post- translational protein translocation to the ER
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Co-translational translocation
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SRP directs ribosomes to the ER membrane
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Free and membrane-bound polyribosomes
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Structure of the Sec61 translocator complex
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Figure 12-39 Structure of the Sec61 complex. (A) A side view (left) and a top view (right, seen
from the cytosol) of the structure of the Sec61 complex of the archaeon Methanococcus jannaschii.
The Sec61a subunit has an inverted repeat structure (see Figure 11-10) and is shown in blue and
beige to indicate this pseudo-symmetry; the two smaller 3 and y subunits are shown in gray. In

the side view, some helices in front have been omitted to make the inside of the pore visible. The
yellow short helix is thought to form a plug that seals the pore when the translocator is closed. To
open, the complex rearranges itself to move the plug helix out of the way, as indicated by the red
arrow. A ring of hydrophobic amino acid side chains is thought to form a tight-fitting diaphragm
around translocating polypeptide chain to prevent leaks of other molecules across the membrane.
The pore of the Sec61 complex can also open sideways at a lateral seam. (B) Models of the closed
and open states of the translocator are shown in top view, illustrating how a signal sequence (or a
transmembrane segment) could be released into the lipid bilayer after opening of the seam. (PDB
codes: 1RH5 and 1RHZ.)



A protein translocating to the ER lumen
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A single-pass transmembrane protein with a cleaved ER signal sequence
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Integration of a single- pass transmembrane protein with an internal signal sequence into the
ER membrane
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Integration of a double- pass transmembrane protein with an internal signal
sequence into the ER membrane
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The insertion of the multipass membrane protein rhodopsin into the ER
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Special case insertion of tail-anchored proteins

— pre-targeting
complex

g

RECOGNITION

————

Get3 ATPase TARGETING
RECYCLING ‘ ' e * P N
RELEASE _/
CYTOSOL
—_—
ER LUMEN L C
Get1-Get2 tail-anchored

protein



The attachment of a GPI anchor to a protein in the ER

COOH glycosylphosphatidylinositol cleav_ed C-terminal
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Figure 12-52 The attachment of a GPI
anchor to a protein in the ER. GPI-
anchored proteins are targeted to the

ER membrane by an N-terminal signal
sequence (not shown), which is removed
(see Figure 12-42). Immediately after

the completion of protein synthesis, the
precursor protein remains anchored in the
ER membrane by a hydrophobic C-terminal
sequence of 15-20 amino acids; the rest of
the protein is in the ER lumen. Within less
than a minute, an enzyme in the ER cuts
the protein free from its membrane-bound
C-terminus and simultaneously attaches
the new C-terminus to an amino group

on a preassembled GPI intermediate. The
sugar chain contains an inositol attached to
the lipid from which the GPI anchor derives
its name. It is followed by a glucosamine
and three mannoses. The terminal
mannose links to a phosphoethanolamine
that provides the amino group to attach
the protein. The signal that specifies

this modification is contained within the
hydrophobic C-terminal sequence and

a few amino acids adjacent to it on the
lumenal side of the ER membrane; if this
signal is added to other proteins, they too
become modified in this way. Because

of the covalently linked lipid anchor, the
protein remains membrane-bound, with all
of its amino acids exposed initially on the
lumenal side of the ER and eventually on
the exterior of the plasma membrane.



Summary of ER protein translocation

Translocation of proteins to the ER

1: Soluble proteins. All soluble (non membrane bound) proteins must have an ER

localization signal -> N-Terminal Amino Acid sequence, which is cleaved off.

2: Membrane proteins

- Membrane proteins can have an N-Terminal ER localization signal: this is generally the
case for proteins whose N-terminus is in the lumen/extracellular

- Multipass integration of membrane proteins is driven by START/STOP sequences.

- This N-Terminal ER localization signal is not obligatory! Proteins where the N-terminus is
cytoplasmic have an "internal" Signal sequence (=at a transmembrane domain), or a tail
anchor

- GPIl anchors are a special case of membrane attachment



What happens (can happen) to a protein inside the lumen of the ER and Golgi?



Quality control of proteins takes places in the ER
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(1) The rapid and revenible formation
of local secondary stractres

(2) Formation of domains through
the cooperative aggregation of
folding nuclei

(3) "Molten globule” formation of
the assembled domaing

(4) An adjustment in the
conformation of the domains

(5) Final protein monomer

I

-

Protein folding often requires assistance in particular to avoid
aggregation during phases when hydrophobic amino acids are

exposed
This assistance is provided by proteins called "chaperones".



Protein folding can be influenced by post translational modifcations

Reversible

- Formation of disulfide bridges

- Isomerization of prolines

- Phosphorylation( Not in the ER)
- Ubiquitination (Not in the ER)

Irreversible (meaning a cell does not edit these once
done, during degradation this can be different!)

- Proteolytic cleavage

- Glycosylation

- Anchoring on a GPI
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N- and O- linked glycosylation
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Synthesis of the lipid- linked precursor oligosaccharide in the rough ER membrane

lipid bilayer of
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Figure 12-48 Synthesis of the lipid-
linked precursor oligosaccharide

in the rough ER membrane. The
oligosaccharide is assembled sugar by
sugar onto the carrier lipid dolichol (a
polyisoprenoid; see Panel 2-5, pp. 98-99).
Dolichol is long and very hydrophobic: its
22 five-carbon units can span the thickness
of a lipid bilayer more than three times, so
that the attached oligosaccharide is firmly
anchored in the membrane. The first sugar
is linked to dolichol by a pyrophosphate
bridge. This high-energy bond activates
the oligosaccharide for its eventual transfer
from the lipid to an asparagine side chain
of a growing polypeptide on the lumenal
side of the rough ER. As indicated, the
synthesis of the oligosaccharide starts on
the cytosolic side of the ER membrane
and continues on the lumenal face after
the (Man)s(GIcNAc)2 lipid intermediate is
flipped across the bilayer by a transporter
(which is not shown). All the subsequent
glycosyl transfer reactions on the lumenal
side of the ER involve transfers from
dolichol-P-glucose and dolichol-P-
mannose; these activated, lipid-linked
monosaccharides are synthesized from
dolichol phosphate and UDP-glucose or
GDP-mannose (as appropriate) on the
cytosolic side of the ER and are then
flipped across the ER membrane. GIcNAc
= N-acetylglucosamine; Man = mannose;
Glc = glucose.



N-linked protein glycosylation in the rough ER
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This helps their folding, protects them against proteases, and
has other functions as well



Glycosylation

What is the purpose of these sugar "trees"? ~CooH
- The presence of this hydrophilic group favors the folding of the protein
- Their presence on the surface of the protein, on the surface of the cell,
protects from extracellular protease
- The sugars are codes that inform the cell of what is happening
and what must follow: T
- Is the protein already folded? - How long has the protein been trying to fold? _“l“cl‘c_[xl‘ﬁﬁi]*
protein been trying to fold? H(GHe
- Etc... (some of which are still to be discovered) i‘&":ii%i’;e{?=o
NH

= N-acetylglucosamine

~N

|1

Necessary but not necessarily sufficient condition, consensus

sequence: /N 1| mannose
Asn-X-Ser/Thr L
The sugar "tree" is added en bloc to the ER lumen

glucose




Glycosylation influences analysis
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Addition of sugars changes the mobility of a protein on an
SDS gel

Migration varies with the number of glycosylation sites,
complexity and heterogeneity of sugars

N-glycosidase F: enzymatically removes N-linked sugars.

A change in gel mobility following N-Gly-F treatment is
evidence of N-glycosylation



N-linked protein glycosylation in the rough ER

N-glycosylation
The tree of sugars is pre-assembled and added to the protein
by an oligosaccharyl-transferase

(B) oligosaccharyl
transferase

NH, rough ER
CYTOSOL
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Figure 12-51 Molecular Biology of the Cell (© Garland Science 2008)



N-linked protein glycosylation in the rough ER
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As soon as the sugars are added, the mannoses start to
be removed in the ER by glucosidases

This allows the recognition of the newly synthesized
protein to interact with chaperones, proteins promoting
folding

The presence of all mannose and glucose indicates that
the protein is young (newly synthesized)

Mannoses can also be removed, but at a slower rate:
"timer" of folding

Trimming of mannoses is recognized by quality control as
a "problem".



The role of N-linked glycosylation in ER protein folding

Calnexin and calreticulin

Two chaperones recognizing mono-glucose on
an N-linked sugar

Calnexin: type | transmembrane Calreticulin:
soluble analogue

Role: bind to a protein during folding to prevent
it from aggregating during the process No
enzymatic activity




The role of N-linked glycosylation in ER protein folding
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The calnexin/calreticulin cycle

- There is a glucosylation-deglucosylation cycle,

- where the enzyme, the glucosyl-transferase, is able
to recognize if

whether a protein has completed its folding or not.

- If the folding is complete, this enzyme will give a
glucose

But this cycle must be able to be interrupted,
otherwise the ER would be full of protein stuck for a
long time in this cycle

The ER also contains mannosidase, but this one has
a slower activity

The cleavage of mannose is therefore an indication of
the time spent in the ER

This acts as an extraction signal from the cycle, where
the protein will be "abandoned" by the cell and put in
the "trash".



Calnexin/Calreticulin cycle & ER protein folding

The calnexin/calreticulin cycle
1: There is a glucosylation-deglucosylation cycle, where the enzyme, the glucosyl-transferase, is able to recognize if

a protein has completed its folding or not. What the recognition signal is for all proteins to be correctly folded is not clear.
- If the folding is complete, this enzyme will give a glucose.

2: This cycle must be able to be interrupted, otherwise the ER would be full of proteins stuck for a long time in this cycle
The ER also contains mannosidase, but this one has a slower activity than the glucosyl-transferase

The cleavage of mannose is therefore an indication of the time spent in the ER
This acts as an extraction signal from the cycle, where the protein will be "abandoned" by the cell and put in the "trash".



What happens if a protein is not properly folded in the ER?



The export and degradation of misfolded ER proteins
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Protein Disulfide Isomerases (a large family) are necessary for
the correct formation of disulfide bridges

Disulfide bridges are essential for protein stability, function and
probably also guide folding

chaperone



Too many improperly fold proteins leads to the unfolded protein
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The unfolded protein response
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Synthesis of lipids in the ER
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Figure 12-53 The synthesis of
phosphatidylcholine. As illustrated, this
phospholipid is synthesized from glycerol
3-phosphate, cytidine-diphosphocholine
(CDP-choline), and fatty acids delivered
to the ER by a cytosolic fatty acid binding
protein.



The role of phospholipid translocators in lipid bilayer synthesis

(A) ER MEMBRANE
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Figure 12-54 The role of phospholipid
translocators in lipid bilayer synthesis.
(A) Because new lipid molecules are

added only to the cytosolic half of the ER
membrane bilayer and lipid molecules

do not flip spontaneously from one
monolayer to the other, a transmembrane
phospholipid translocator (called a
scramblase) is required to transfer lipid
molecules from the cytosolic half to

the lumenal half so that the membrane
grows as a bilayer. The scramblase is not
specific for particular phospholipid head
groups and therefore equilibrates the
different phospholipids between the two
monolayers. (B) Fueled by ATP hydrolysis, a
head-group-specific flippase in the plasma
membrane actively flips phosphatidylserine
and phosphatidylethanolamine directionally
from the extracellular to the cytosolic leaflet,
creating the characteristically asymmetric
lipid bilayer of the plasma membrane of
animal cells (see Figure 10-15).
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Topologically equivalent compartments, are able to “communicate”

cargo molecule plasma membrane rough ER lysosome

I

nucleus
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e Tv’\

inner nuclear outer nuclear Golgi secretory
membrane membrane | apparatus vesicle

(A)

nuclear envelope endosome

(B)

Topology of cellular spaces: the interior of the compartments of
the endomembrane system is topologically equivalent to the
extracellular space This is a consequence of vesicular transport



Transport pathways
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Uptake and Expulsion at the plasma membrane
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Cell membranes are composed of lipids 50:50 mass ratio
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Basics of vesicle transport
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Vesicles in the secretory and endocytic pathways
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Two “problems” to solve in vesicle transport

Mechanism

- Form a bud

- Detach a vesicle

- Move the vesicle optimally through the cell

- Merge the vesicle with an acceptor compartment

- Ensure that the compartments remain constant in size

Specificity
- Put the right proteins in the nascent vesicle
- Address the vesicle to the right compartment



Use of different coats for different steps in vesicle traffic
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Electron micrographs of clathrin-coated, COPI-coated, and COPIl-coated vesicles
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Phosphatidylinositol (Pl) and phosphoinositides (PIPs)
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The intracellular location of phosphoinositides
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Clathrin Coated vesicles



The structure of a clathrin coat
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Clathrin-coated pits and vesicles




The assembly and disassembly of a clathrin coat
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Lipid-induced conformation switching of AP2
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The structure of BAR domains and membrane bending

BAR domain dimer

membrane




pinching off clathrin-coated vesicles: Dynamin

constricted

. »
membrane -
neck

GTPase
domain

(@)

dynamin helix and
(A) associated proteins

domain of
dynamin

(D)




Copll Coated vesicles



Use of different coats for different steps in vesicle traffic
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Formation of a COPIl-coated vesicle
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Non spherical vesicle: packaging of procollagen into large tubular COPIl-coated vesicles
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The recruitment of membrane and soluble cargo molecules into ER transport vesicles

forming transport vesicle
I I
Sar1-GTP

outer COPII :?:feﬁ?]; of
coat proteins inner COPII
coat

exit signal on

cargo receptor
CYTOSOL

resident
ER protein

w %

ER LUMEN

exit signal on
\/ soluble cargo
protein

chaperone proteins bound to
unfolded or misfolded proteins



Movement of vesicles is aided by the cytoskeleton
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Movement of vesicles goes across microtubules

microtubule
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http://www.youtube.com/watch?v=7sRZy9PgPvg



How are vesicles recognized by the correct destination compartment?



Addressing implies recognition, which implies a notion of identity

What contributes to the identity of a compartment or a domain of a - ~—
compartment? d
O~
\ phagocytosis
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—_—
endocytosis
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regulated exocytosis
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Part 2 RAB proteins: Subcellular locations of Some Rab Proteins

the Rab family of small GTPases: identity markers involved in
vesicle recognition

Subcellular Locations of Some Rab Proteins

Protein Organelle

Rab1 ER and Golgi complex

Rab?2 cis Golgi network

Rab3A Synaptic vesicles, secretory vesicles

Rab4/Rab11 Recycling endosomes

Rabb Early endosomes, plasma membrane, clathrin-coated vesicles
Rab6 Medial and trans Golgi

Rab7 Late endosomes

Rab8 Cilia

Rab9 Late endosomes, trans Golgi



The formation of a Rab5 domain on the endosome membrane
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GEF

A model for a generic Rab cascade
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Part 3 the fusion proteins: SNARE proteins
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SNARE complexes can only be made with certain combinations and thus define
specificity
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Traffic, Volume: 18, Issue: 12, Pages: 767-775, First published: 31 August 2017, DOI: (10.1111/tra.12524)



A model for how SNARE proteins may catalyze membrane fusion
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Dissociation of SNARE pairs by NSF after a membrane fusion cycle
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SNARE complexes are very stable; therefore, it costs energy to dissociate them



Tethering of a transport vesicle to a target membrane

- cargo receptor

cargo The recognition between a vesicle and an acceptor
\ compartment mediated by multiple simultaneous interactions
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